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A test of the frozen-° ux approximation using a
new geodynamo model

By Paul H. Roberts1 a nd Gary A. Glatzmaier2

1Institute of Geophysics and Planetary Physics, University of California,
Los Angeles, CA 90095, USA

2Earth Sciences Department, University of California, Santa Cruz, CA 95064, USA

The physics underlying the frozen-®ux approximation is reviewed. Recent high-
resolution geodynamo simulations, described here for the  rst time, a¬ord oppor-
tunities of testing the approximation, and the results from a very simple test are
reported. This consists in evaluating the unsigned ®ux of magnetic  eld from the
core at three successive epochs separated by about 150 years, and in showing that
this changes by only ca. 3% in the intervals between the epochs. Because of the
smallness of this change, which is created by the electromagnetic di¬usion excluded
in the frozen-®ux approximation but present in the simulations, we argue that the
approximation is useful in analogous analyses of the geomagnetic  eld over similar
time-scales.

Keywords: geodynamo; computer simulations; frozen ° ux

1. Background to the approximation

The magnetic  eld, B , in a body of conducting ®uid such as the Earth’s core is
governed by the induction equation

@B

@t
= r [v B r B ]; (1.1)

and by

r B = 0: (1.2)

Here v is the velocity of the ®uid and is its magnetic di¬usivity. Equation (1.2) is
an initial condition; if it holds at time t = 0, it holds for all t according to (1.1).

Let us introduce a characteristic length-scale, L , for B and a characteristic ®ow
speed, V . Dimensionless analysis of (1.1) shows that B evolves on two time-scales,
the advection time-scale, v , and the time-scale, :

v = L = V ; = L 2= : (1.3)

The ratio of these time-scales is the magnetic Reynolds number,

R = = v = V L = : (1.4)

In order of magnitude this is the ratio of the second term in (1.1) to the third and,
if

R 1; (1.5)
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1110 P. H. Roberts and G. A. Glatzmaier

we are encouraged to omit the third term, giving the induction equation for a per-
fectly conducting ®uid ( = 0):

@B

@t
= r (v B ): (1.6)

Alfv́en’s frozen-®ux theorem follows from (1.6): `in a perfectly conducting ®uid, mag-
netic ®ux tubes are material volumes’, i.e. they move with the ®uid as though frozen
to it.

In applying these results to the geomagnetic  eld, we shall suppose that B at a
given point x in the core varies rapidly, on the time-scale v . By (1.1), the relative
motion between material volumes and ®ux tubes is of order = L , which is small
compared with V by (1.5). The variation of B at x may therefore be visualized
through Alfv́en’s theorem as the rearrangement of pre-existing magnetic ®ux by the
®uid velocity v. But, if we move with a small element of ®uid volume V as it is
advected by the ®ow, we would  nd according to (1.1) that the ®ux threading V
changes slowly, on the time-scale v. If, then, we follow V over a `time-scale
of observation’, O , that is of order or greater, we would  nd that the change in
the threading ®ux would be so substantial as to make the frozen-®ux approximation
(1.6) valueless. In short, inequality (1.5) is an insu¯ cient justi cation for replacing
(1.1) by (1.6). Necessary conditions for frozen ®ux to be applicable are

v ; O : (1.7)

When both these hold, Alfv́en’s theorem is useful both analytically and as a means
of visualizing induction processes in the core.

2. Applicability of the approximation to the Earth’s core

The period of time over which data of su¯ cient quality exist to test (1.6), and to
make use of (1.6) if they survive the test, is not even as great as 100 years, though we
shall take O = 100 yr. The traditional way of estimating V for the core is through
the westward drift of the  eld. This suggests that V = 5 10 4 m s 1 for features
of scale L 103 km, so that v 65 yr, which is of the same order as the eddy
turnover time in the Glatzmaier{Roberts geodynamo simulations (see Glatzmaier &
Roberts 1996b, 1997). Taking = 2 m2 s 1 (see, for example, Braginsky & Roberts
1995, Appendix E), we  nd that R 250 and 1:6 104 yr. It appears that both
inequalities (1.7) are obeyed.

Because of its low kinematic viscosity, , the core is certainly in turbulent motion,
with kinetic and magnetic energies spread over many scales L . The use of the single
scale above is clearly somewhat simplistic. Considered as a function of eddy size,
the magnetic Reynolds number R should ultimately decrease with L so that (1.5)
is violated for all su¯ ciently small L . Let us estimate very approximately the scale
L c for which R( L c) = 1; roughly speaking, (1.6) is reasonable for L > L c and is
unreasonable for L < L c. The energy spectrum of the core is unknown, but let us
suppose (as suggested by the computer simulations to be described in x 3) that the
kinetic energy K` in wavenumber ` is approximately proportional to ` 2:4. (Here
` refers to the spherical harmonic order in the decomposition of the total energy,
poloidal and toroidal; see also (2.2).) This suggests that V / L 1:2 for eddies of scale
L , and that R / L 2:2 for these eddies. If R = 250 for L 103 km (see above), then
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A test of the frozen-° ux approximation 1111

R = 1 for L c 80 km. This is comparable with the smallest scale, ` = L, of B that
can be resolved on the core surface; L 12{13 (see below). For L c 80 km, we have

= L 2
c= 100 yr. We conclude that both of the inequalities (1.7) are marginally

satis ed for ` = L and O 100 yr, and are increasingly well obeyed as ` decreases
from L. If this is true then, as suggested by Roberts & Scott (1965), (1.6) should be
a good approximation to (1.1) for the accessible length- and time-scales.

The Roberts{Scott idea encountered immediate di¯ culties. First, B and @B=@t
are known at the Earth’s surface, r = a, but (1.6) at best applies at S, the core
surface, r = c. In between lies the mantle, and it is necessary to extrapolate B
through this. Since the electromagnetic time constant of the mantle, M , is much
smaller than v (see, for example, Gubbins & Roberts 1987, x 3.3), R M M = v 1.
This means that to a good approximation the mantle is an electrical insulator and,
if there are no other sources in the mantle, B is a potential  eld, B̂ , not only on and
above the Earth’s surface but also within the mantle:

B̂ = rV; for r > c; (2.1)

where r2V = 0 and where the usual expansion in exterior spherical harmonics
applies:

V = a

1X

=̀ 1

X̀

m = 0

[gm
` (t) cos m + hm

` (t) sin m ](a=r)` + 1P m
` ( ): (2.2)

Here (r; ; ) are geocentric spherical coordinates, with = 0 as the north polar axis,
P m

` are the Schmidt normalized Legendre functions and gn
` and hm

` are the Gauss
coe¯ cients.

In principle, we can evaluate B̂ at the base of the mantle by carrying out the di¬er-
entiations (2.1) and setting r = c. In practice, di¯ culties arise. First, the assumption
that there are no other sources of B between r = a and r = c is incorrect; there is
signi cant permanent magnetism in the crust, which makes the sum (2.2) meaning-
less at r = c if taken beyond a cut-o¬ ` = L of order 12 to 13. Second, because of
inaccuracies and poor spatial coverage in the data, errors in gm

` and hm
` inevitably

arise; these increase with `, and they produce errors in B̂ that are further enhanced,
by a factor proportional to (a=c)` that increases with `, during extrapolation to the
core surface. Nevertheless, when the series (2.2) is terminated at a value L 12,
techniques have been developed through which B̂ can be obtained on S with some
degree of con dence, as many studies (too numerous to reference here) attest.

A further di¯ culty concerns the no-slip conditions which, in the reference frame
rotating with the mantle (the frame we shall now employ until x 3), are

r v = 0; on S (2.3)

r v = 0; on S (2.4)

We have here used the radius vector r from the geocentre as the normal to S. If we
applied (2.4) to (1.6), we would  nd that B̂ is time-independent in the mantle frame.
To resolve this absurdity, we have to consider the magnetohydrodynamics (MHD)
of the core. The (molecular) viscosity, , of the core is thought to be smaller by a
factor of about 106 than the (molecular) magnetic di¬usivity, (see, for example,
Braginsky & Roberts 1995; De Wijs et al . 1998). Plausibly, therefore, there is a thin
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1112 P. H. Roberts and G. A. Glatzmaier

boundary layer on S of Ekman-layer type in which viscous forces are signi cant. In
the `mainstream’ beneath the layer, the ®ow is inviscid to leading order, and can
obey (2.3) but not (2.4). The boundary-layer ®ow matches to the mainstream at
a level indistinguishable from r = c that we shall call the `top of the core’; the
boundary-layer ®ow also satis es conditions (2.3) and (2.4) on S. In this process it
creates a small violation of (2.3) at the top of the core through a pumping process of
the type associated with Ekman layers (see, for example, Greenspan 1968). We shall
ignore this, and shall apply (2.3) at the top of the core, where the ®ow is therefore
horizontal; we denote it by vH and term it the `sur cial velocity’. It is clear from (1.2)
that, to a very good approximation, the normal component Br of B is continuous
across the boundary layer and is therefore equal to B̂r on S.

The frozen-®ux approximation has been used on numerous occasions in e¬orts to
determine vH. Because Br does not change across the boundary layer, it is attractive
to work with the r-component of (1.6), which is

@B̂r

@t
= rH (vrB̂H B̂rvH): (2.5)

Ignoring pumping by the boundary layer, we  nd from (2.5) that

@B̂r

@t
+ rH (B̂rvH) = 0; (2.6)

which may also be written as

@B̂r

@t
+ vH rHB̂r = B̂rrH vH: (2.7)

The frozen-®ux approximation is disappointing in that it is impossible to derive
the sur cial velocity in full (or perhaps at all) from the  eld. There are serious
problems of non-existence and non-uniqueness that should be addressed. Concerning
non-existence, we introduce (following Backus 1968) the null ° ux curves, i.e. the
curves on S on which B̂r is zero. An area of S that is enclosed by a null ®ux curve
and in which B̂r has everywhere the same sign is called a null ° ux patch. There
is one principal null ®ux curve, the magnetic equator, and several subsidiary null
®ux curves. It is easily shown from (2.6) that, since vH is  nite everywhere and in
particular on the null ®ux curves,

d

dt

Z

P

B̂r dS = 0; (2.8)

where the integral is taken over a null ®ux patch P and d=dt includes the time
evolution of P . This result is no more than an example of Alfv́en’s theorem applied
to the cross-section, P , of a ®ux tube emerging from the core. If we take all the null
®ux curves together, we see from (2.8) that

I

S

jB̂rj dS = constant for all t; (2.9)

this integral of unsigned ° ux, jB̂rj, being taken over the entire core surface S. Of
course, (2.9) does not imply that (2.8) holds for each individual null ®ux patch.
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There are two reasons why no straightforward analysis of the geomagnetic data
will con rm (2.8), where by `straightforward analysis’ we mean one that ignores
the frozen-®ux approximation. First, there are what we shall call errors of type 1:
even if (2.8) were true, data analysis would not con rm it because of errors in,
and the incompleteness of, available data and because of the di¯ culties inherent in
extrapolating  elds accurately from the Earth’s surface to the core surface. Second
(the error of type 2), because of electromagnetic di¬usion, (2.8) is not precisely true
anyway. The basic tenet of Roberts & Scott (1965) was that error 1 is much more
signi cant than error 2. If this is true, all claims that deviations from (2.8) have
been discovered must be viewed with suspicion. Moreover, if error 2 is swamped by
error 1, nothing is lost by eliminating error 2 totally through a non-straightforward
data analysis in which (2.8) is imposed as a constraint.

The idea of adding constraints to geomagnetic analyses is, of course, nothing new.
For example, analyses are often performed with the series (2.2) rather than the full
representation that also includes the exterior harmonics; in other words, the analyses
have been constrained a priori to exclude the exterior harmonics. The Roberts{
Scott proposal was merely to add a new form of constraint. Such analyses have been
performed by Constable et al . (1993) and O’Brien et al . (1997). Not only is nothing
lost by such analyses, but also something is gained, namely the certainty that a  nite
vH exists. This vH is not unique. Roberts & Scott (1965) provided a simple example.
If the sur cial velocity is purely toroidal, rH vH = 0, and (2.7) reduces to

@B̂r

@t
+ vH rHB̂r = 0: (2.10)

If vH is one solution to (2.10) for the assigned B̂r and @B̂r=@t, then vH + r rHf is
another, where f(B̂r) is any function that is constant on each constant-B̂r contour
on S . A much more complete and satisfying discussion of non-existence and non-
uniqueness was later provided by Backus (1968). Several proposals have been made
to remove the non-uniqueness by supplementing the frozen-®ux approximation with
additional hypotheses, but we shall not review these.

The developments just described are all based on the idea that the frozen-®ux
approximation is an adequate way of describing the evolution of B in the mainstream
beneath the boundary layer, i.e. that not only but also can be assumed to be
zero at leading order. Since the geodynamo problem concerns countering magnetic
di¬usion by motional induction, how can it be right to use (1.6) instead of (1.1) in
the mainstream? Recently Love (1999) has given two ingenious kinematic examples
to show how (1.6) leads to vH quite di¬erent from the actual sur cial velocity of the
®ow maintaining the dynamo. The  rst of these is steady, and therefore does not
satisfy the requirement of x 1 that B evolves on the v time-scale. The same seems
to be true of Love’s (1999) second model, though both v and B are time dependent
in that case. Since we have no ambitions in this paper to infer vH, we shall not enter
into these controversial matters here.

Other doubts about the value of the frozen-®ux approximation hinge on whether
errors of type 2 are smaller than those of type 1. This is a delicate matter for, while
error 2 must be greater for a small-scale patch than a large-scale patch because its
electromagnetic time constant is smaller, error 1 is also greater because the patch
is described by higher harmonics ` of the  eld, the errors in which are much larger,
especially after extrapolation to S . In claiming that they have strong evidence that
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new ®ux is emerging from the core into the mantle from a secular variation centre
under and to the west of Africa, Bloxham & Gubbins (1986) are implying that error 2
can be detected despite error 1. If there is a strong subsurface toroidal  eld in the
core, it is easy to imagine that a poloidal upwelling, in which rH vH 6= 0, will push
toroidal  eld through S and into the mantle. Several models of such a process have
been constructed (Coulomb 1954, 1955; Allan & Bullard 1958, 1966; Hide & Roberts
1961; Nagata & Rikitake 1961; Rikitake 1967; Bloxham 1986; Drew 1993). There is
no doubt that such processes can and must occur in the Earth, but it is less clear how
far they discredit the frozen-®ux approximation. At the time the early papers just
referenced were written, it appeared that they posed a serious threat to the frozen-
®ux approximation, but in recent simulations of the geodynamo the toroidal  elds
have been comparable with the poloidal  elds, not much larger as had previously been
expected (see, for example, Glatzmaier & Roberts 1996b, 1997). These geodynamo
simulations also suggest that toroidal  elds are relatively weak near the core{mantle
boundary compared with those near the inner-core boundary. The creation of new
poloidal ®ux in the mantle by upwellings in the core may therefore not be as rapid
as had been thought.

A further concern centres on the e¬ects of small-scale turbulence on the large-scale
 eld and ®ow (belonging to ` L). The EMF v B created by small-scale v and B
has a part that alters the large-scale  eld. The way it does so de nes the subject of
mean ¯eld electrodynamics (see, for example, Krause & R�adler 1980). The large-scale
EMF from the turbulence is parametrized as B r B (for example), where
B is now the large-scale  eld; B de nes the so-called -e¬ect and represents a
turbulent enhancement of the molecular di¬usivity . Braginsky & Meytlis (1990)
argue cogently that these terms are insigni cant in the MHD of the Earth’s core.

The situation is di¬erent for the turbulent transport of momentum. As we have
seen, the molecular viscosity of the core is about 106 times smaller than , and
turbulence is required, and exists, to transport momentum. The Reynolds analogy
provides an approximate way of parametrizing this process, through the introduction
of a `turbulent viscosity’ t of order . Turbulent transport alters the structure of
boundary layers, an e¬ect that has been observed, for example, in ocean physics (see
Hunkins 1966). Because t , the boundary layer on S may more closely resemble
an Ekman{Hartmann layer (Gilman & Benton 1968) than the Ekman layer invoked
earlier. If so, r B will change signi cantly across the layer, so that r B at the

top of the core will di¬er from r B̂ on S . The tangential components of (1.6) will
then not be immediately useful in inferring vH. The boundary layer is thin, however,
so that the validity of (2.6) is not a¬ected.

Questions similar to these arise in numerical simulations, where the e¬ect of the
unresolved scales of v and B on the resolved scales may require parametrization.
This matter will arise below, where we shall suppose (as above) that the molecular
EMF need not be modi ed. We shall  nd it necessary, however, to increase even
beyond t .

3. Application of the approximation to numerical simulations

The uncertainties introduced by the data errors and their incompleteness, combined
with the di¯ culties of extrapolation to the core surface, make it hard to decide how
seriously the frozen-®ux approximation is violated in the Earth’s core during the
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time O 100 yr over which it has been closely observed. Recently, however, there
have been several numerical simulations of the geodynamo that have produced  elds
that have resembled the geomagnetic  eld both in structure and evolution (see, for
example, Glatzmaier & Roberts 1996b, 1997). Since simulations directly provide B
on the core surface, they completely eliminate errors of type 1, and they do so in an
Earth-like context. The idea of using such simulations to test the frozen-®ux approx-
imation is attractive and has been attempted by Glatzmaier & Roberts (1996a),
with encouraging results. But these tests can be criticized because the simulations
on which they are based required hyperdi¬usion in order to secure numerical con-
vergence, and hyperdi¬usion of B violates frozen ®ux. Recently, however, we have
produced a very high-resolution geodynamo simulation without hyperdi¬usion, which
is quite suitable for testing frozen ®ux. Results from this model are presented here
for the  rst time. We know a priori that type-2 errors must be present, so that (2.8)
cannot be precisely true. The test of the frozen-®ux hypothesis must therefore be
modi ed. It becomes `how well is (2.8) obeyed’ ? We shall ask only `how well is the
unsigned ®ux (2.9) from the core conserved’ ? Since (2.9) does not imply (2.8), this
is a more limited objective.

We solve the MHD convection equations in the form proposed by Braginsky &
Roberts (1995) and in a frame of reference in which the total angular momentum of
Earth is zero. This means that the mantle and therefore the core{mantle boundary
are in slow solid-body rotation, so although (2.4) is satis ed in the frame of the
mantle, it is not in our frame of reference. This rotation, which is quite small (of
order 3 10 4 deg yr 1), has not been removed in the  gures presented here. All
di¬usivities, with the exception of , are assumed to be 7 m2 s 1. Because we have
used = 7 m2 s 1 rather than the geophysically more realistic 2 m2 s 1, we shall, in
what follows, reinterpret time-scales by multiplying them by the ratio, 3.5, of these
two values of , so that all velocities will be reduced by the same factor. For example,
the scaled rotation of the core boundary is of order 10 4 deg yr 1. Nevertheless, we
recognize that such a rescaling of the MHD equations strictly requires the rotation
of Earth to be reduced by the same factor, and this has not been done. Typical core
velocities V are of order 3 10 4 m s 1, and the overturning time of large-scale core
eddies is ca. 200 yr. These values are consistent with those used in x 2 to motivate
the frozen-®ux approximation. As in our earlier simulations, it is necessary to use a
viscosity even larger than ; after scaling it is 1500 m2 s 1.

Glatzmaier & Roberts (1996b) used the spectral transform technique in their
numerical work. In their 1996 simulation, all harmonics were included in the expan-
sion of v and B up to ` = m = 21. In the present highly resolved model, a trapezoidal
truncation is employed: 120 Fourier modes (0 m 119) in longitude are included
and, for each m, all values of ` are present from m to 120 + m. The largest value of `
appearing anywhere is therefore ` = 239, which occurs for m = 119. The Chebychev
expansion in r was up to 48 in the ®uid core and up to 32 in the solid core. The
integration was initiated from a case of low resolution.

The greater spatial resolution of the new model (60 times as many spherical har-
monics) required a small numerical time-step (7 days) because of the demands of the
magnetic Courant condition. The computational expense is very great, and so far
the model has been integrated for only about 1400 years of simulated time. This was
far enough for all the transients connected with the initialization of the computation
to have disappeared. This is con rmed by  gure 1, which shows the magnetic and
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Figure 1. Power spectra of the magnetic energy (upper curve) and kinetic energy (lower curve)
integrated throughout the ° uid core at epoch 2, as a function of ` for 0 < ` < 240. The
spectra are given logarithmically, in arbitrary units which cover 10 decades; the kinetic energy
is consistently about a thousand times less than the magnetic energy. The representation of the
¯eld and ° ow used to obtain these results employed a trapezoidal truncation; 120 Fourier modes
(0 m 119) in longitude are included and, for each m, all values of ` are present from m
to 120 + m. The largest value of ` appearing anywhere is therefore ` = 239, which occurs for
m = 119.

kinetic energies (relative to the rotating frame of reference) integrated throughout
the ®uid core as a function of the spherical harmonic degree `. It was not, however,
long enough for the system to have evolved far from its initial state, which was quite
soon after a magnetic dipole reversal had taken place. This may be seen both from
the comparatively small energy in the ` = 1  eld ( gure 1), and later from the untyp-
ically large deviation of the geomagnetic equator from the geographical equator in
one large band of longitude. The fact that the  eld is transitional in no way detracts
from its usefulness in testing the frozen-®ux approximation, quite the reverse in fact.
Since the unsigned ®ux changes more rapidly during transition than between rever-
sals, these  elds provide a particularly stringent test of the approximation. Figure 1
also demonstrates that the solution has converged satisfactorily, without hyperdif-
fusion. The magnetic energy is about three orders of magnitude greater than the
kinetic energy, and has a broad peak between harmonic degrees ` = 5{15.

We focus on three snapshots of the solution, each separated from its neighbour
by approximately 150 years of simulated time ( O = 150 yr). We shall refer to these
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(a) (d

(b) (e)

(c) f( )

)

Figure 2. Contours of equal B̂r on the core surface (a){(c) and on the Earth’ s surface (d){(f).
(a); (d) epoch 1; (b); (e) epoch 2; (c); (f ) epoch 3. The truncation level L is 12. The bold full
curves are magnetic equators, B̂r = 0. On the continuous curves B̂r > 0; on the dashed curves
B̂r < 0. The contour interval is 7 G for the core surface and 0.1 G for the Earth’ s surface.

as `epoch 1’, `epoch 2’ and `epoch 3’. (Because of the infrequency of data dumps,
separations at the shorter O 100 yr intervals were not available.) Figure 2 shows,
in equal-area projections, contours of constant B̂r on the Earth’s surface and on the
core surface for each epoch. Figure 2 is drawn for L = 12, and  gure 3 presents the
same plots for L = 72. It is striking how much of the small-scale structure, associated
with large `, is lost at the Earth’s surface through the geometric attenuation factor
(c=a)` + 2 (see (2.2)). Using epoch 3 as an illustration,  gure 4 shows how structure
develops on the core surface as L is increased. The changes from one panel to the
next tend to diminish as L increases; the  elds at L = 60 and L = 72 are very similar.
This is also consistent with the results shown in table 1, where the maximum and
minimum B̂r are given for the same six values of L as  gure 4.

These  gures underscore the limitations imposed by geometry in extrapolating B̂r

downwards; it is quite di¯ cult to distinguish the plots of B̂r at the core surface for
the L = 12 truncation from those for the L = 72 truncation at the same epoch, even
though the  elds at the core surface are very di¬erent. (Indeed, the same may be said
at the L = 12 and L = 24 levels.) Certainly, the same must be true for the Earth.
Estimates of B̂r at the Earth’s core{mantle boundary using L = 12 are necessarily of
large scale, but these highly  ltered results do not imply that the actual core{mantle
boundary  eld is dominantly of large scale. Likewise, the sur cial ®ow, vH, based
on these highly  ltered core{mantle boundary- eld structures will also tend to be of
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(a) (d

(b) (e)

(c) f( )

)

Figure 3. Contours of equal B̂r on the core surface (a){(c) and on the Earth’ s surface (d){(f ).
(a); (d) epoch 1; (b); (e) epoch 2; (c); (f) epoch 3. The truncation level L is 72. The bold full
curves are magnetic equators, B̂r = 0. On the continuous curves B̂r > 0; on the dashed curves
B̂r < 0. The contour interval is 7 G for the core surface and 0.1 G for the Earth’ s surface.

large scale but, if B̂r at the core{mantle boundary were accurately known to ` = 239
as in the simulation, the sur cial ®ow would be dominated by small scales.

According to the frozen ®ux approximation,  eld topology cannot change on the
core surface. However, when we compare panels  gure 2a{c at the L = 12 truncation
and  gure 3a{c at L = 72 we see this is only true for the large null ®ux patches.
This is only to be expected since L = 72 corresponds to L much smaller than 80 km,
and for L = 72 is much less than 100 years. Another interesting feature of the
high-L plots is the presence of small regions of very high ®ux, `core spots’, somewhat
analogous to the sunspots observed on the solar surface.

Turning next to the question of the conservation (2.9) of unsigned ®ux, we divided
the core surface S into 180 180 `rectangles’ of equal surface area, and summed B̂r

and jB̂rj from each, to provide estimates of

F =

I

S

B̂r dS; (3.1)

U =

I

S

jB̂rj dS: (3.2)

The ®ux integral, F , should be zero by (1.2), and its numerical value gives some
feeling for the accuracy to which the unsigned ®ux, U , has been obtained. We found
that jF j 10 4U . A further test was carried out in which S was divided into
360 360 rectangles, and the results did not di¬er to the accuracy shown in table 2,
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(a)

(d

(b)

(e)

(c)

f( )

)

Figure 4. Contours of equal B̂r on the core surface for epoch 3 at di® erent truncation levels: (a)
L = 12; (b) L = 24; (c) L = 36; (d) L = 48; (e) L = 60; (f ) L = 72. The bold full curve is the
magnetic equator, B̂r = 0. On the continuous curves B̂r > 0; on the dashed curves B̂r < 0. The
contour interval is 7 G.

Table 1. Maxima and minima of B̂r on the core surface as
functions of the truncation level, L, for epoch 3

(Unit of B̂r = 1 G.)

L 12 24 36 48 60 72

B̂r ;m ax 26 42 46 49 49 49

B̂r; m in 26 44 64 70 76 76

where U is given as a function of the cut-o¬ L for the three epochs. Beyond L = 36,
the unsigned ®ux does not change to the accuracy shown. The averages of jB̂r j over
the core surface for the three epochs are, respectively, 6.4, 6.2 and 5.9 G.

It may be seen from table 2 that, at the geomagnetic (L = 12) truncation, the
change in U over 150 years is only ca. 3%, or ca. 2% per century, corresponding to  eld
changes on the core surface of order 0.1 G. In the corresponding geophysical context,
the question to be answered is whether this type-2 error (to use our earlier terminol-
ogy) is large or small compared with the type-1 errors arising from inaccuracies in,
and the incompleteness of, the available data, and the di¯ culties of extrapolation
to the core surface. The error of extrapolation may be roughly assessed from the
simulation by asking how much of the U obtained at the L = 36 truncation has been
omitted in the L = 12 truncation. Comparing the second and fourth columns of
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Table 2. Evolution of the unsigned ° ux, U , from the Earth’s core for three truncation levels L

(Unit of ° ux is 101 8 G cm2 .)

epoch L = 12 L = 24 L = 36

1 9.3 9.6 9.7

2 9.0 9.4 9.5

3 8.7 9.0 9.0

table 2 it appears that this is at least as great as the variations within column 1 (the
type-2 error). Since this is only one part of the type-1 error, we conclude that the
frozen-®ux approximation provides a way of modelling the geomagnetic  eld that is
acceptable in view of the greater type-1 errors inherent in modelling the geomagnetic
 eld on the core surface. This also supports the approach of Constable et al . (1993)
and O’Brien et al . (1997) to geomagnetic  eld analysis.
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